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Abstract 
 

Decadal prediction using climate models faces long-standing challenges. While global climate 

models may reproduce long-term shifts in climate due to external forcing, in the near-term they 

often fail to accurately simulate interannual climate variability, as well as seasonal variability, 

wet and dry spells, and persistence, which are essential for water resources management. We 

developed a new climate-informed K-Nearest Neighbor (K-NN) based stochastic modeling 

approach to capture the long-term trend and variability while replicating intra-annual statistics. 

The climate-informed K-NN stochastic model utilizes historical data along with climate state 

information to provide improved simulations of weather for near-term regional projections. 

Daily precipitation and temperature simulations are based on analog weather days that belong to 

years similar to current year's climate state. The climate-informed K-NN stochastic model is 

tested using 53 weather stations in the Northeast United States with an evident monotonic trend 

in annual precipitation.  The model is also compared to the original K-NN weather generator and 

ISIMIP-2b GFDL General Circulation Model in a cross-validation mode. Results indicate that 

the climate-informed K-NN model provides improved simulations for the dry and wet regimes, 

and better uncertainty bounds for annual average precipitation. The model also replicates the 

within-year rainfall statistics. For the 1960-1970 dry regime, and the model captures annual 

average precipitation and the intra-annual coefficient of variation. For the 2005-2014 wet regime, 

the model replicates the monotonic trend and daily persistence in precipitation. These improved 

simulations can be used for accurately simulating near-term streamflow, which in turn can be 

used for short-term water resources planning and management.   

1. Introduction 

 Stationarity of a hydroclimate time series is defined as the invariance of its statistics 



with time (Shaw, 2014). Any time variation in the properties can indicate non-stationarity, 

including shifts in the mean (Westra et al., 2013; Alexander et al., 2006; Fischer & Knutti, 

2014; Villarini et al., 2009; Aziz & Burn, 2006), variance (Coulibaly & Burn, 2004; Lewis 

& King, 2017), and the autocorrelation structure (Razavi et al., 2015). In their much-

acknowledged work, Milly and co-authors (Milly et al., 2008) urge the water resources 

community to reconsider stationarity as a central assumption of risk assessment and 

planning analysis. They suggest that in the wake of substantial anthropogenic change of 

Earth’s climate, stationarity is dead as a viable assumption. However, Jain and Lall (Jain & 

Lall, 2001) argue that the presence of quasi-cyclical modes of natural climate variability 

render the traditional assumption of stationarity void in any case. Essentially, even in a 

stationary climate, one might observe statistically significant trends in hydro-climatic 

systems over time due to natural variability (National Research Council, 1999; Cohn & 

Lins, 2005) or processes with long-term persistence (Villarini et al., 2009). Also, given 

short observation periods, part of a long-timescale oscillation can be wrongly extrapolated 

as a monotonic trend (Bloschl & Motanari, 2010). Lin and co-authors (Lins & Cohn, 2011) 

also show that non-stationarity is not always discriminable from stationarity. They argue 

that this question is highly dependent on which signals are sampled and the length of the 

period under investigation. 

 Many researchers have adopted the use of General Circulation Models (GCMs) as a 

means for the planning and risk assessment of hydro-systems under changing and uncertain 

future climates. Scenarios of future climate are often based on long-term GCM simulations 

forced by different emission pathways, with bias correction for systematic errors based on 

historic data (Wilks & Wilby, 1999; Steinschneider et al., 2015; Taner et al., 2017; Trzaska 

& Schnarr, 2014). However, even when GCMs correctly represent the long-term secular 

trend, they may fail to capture internal variability (Frederick, 2011; Hempel et al., 2013, 

Cassou et al., 2018) and simulating extremes (Katiraie‐Boroujerdy et al., 2019). This can 

lead to substantial bias in representing climate, particularly for near-term projections at the 

regional scale (Van Oldenborgh et al., 2013; Krakauer & Fekete, 2014). Moreover, bias 

correction does not provide any reliable solution to fix this disparity because it assumes 

that the bias statistics calculated over the historical period can be extrapolated to the future 

(Kerkhoff et al., 2014). Given the uncertainties involved in GCMs, the question arises to 

what extent their application is reliable in different regions. Are GCM simulations 

sufficient for future hydro-systems planning and management? Or, should we rely on the 

assumption of stationarity for robust decision-making, until current models are improved 



(Stakhiv, 2011)? We explored answers to these questions using the Northeast United States 

climate region as a case study. The Northeast climate region has significant observed trends 

in climate and is one of the wettest parts of the United States. Over the last century, long-

term trends in precipitation have been 9.5 mm ± 2 mm/decade, mainly in the spring, 

summer and fall seasons (Hayhoe et al., 2007).  Substantial upward trends are also noted 

in extreme precipitation, based on the recent analyses of the Northeast climate (Hoerling et 

al., 2016; Easterling et al., 2017; Huang et al., 2017). This increase of the total amount of 

precipitation and frequency of heavy precipitation events raises concerns about flooding 

and its effects on aging infrastructure in the Northeast (Horton et al., 2014). 

 Figure 1 summarizes different statistics of daily precipitation for a bias-corrected 

historical GCM simulation (here GFDL model from ISIMIP2-b dataset (Warszawski et al., 

2014; Frieler et al., 2017)) and contrasts them with in-situ observations in 53 selected 

weather stations over the Northeast climate region (the in-situ data are described in the next 

section: Data and Methodology). The climate model simulations are obtained from the grid 

cells corresponding to the 53 weather stations to enable comparison across datasets. The 

median of average precipitation in the model simulation is much higher than that of the 

corresponding stations. This deviation is more prominent in the 1960s, although, it has to 

be noted that the above climate model is not forced with observed sea surface temperatures 

(SSTs), hence, accurate representation of the time properties may not fully be possible.    

The range of the observations, representing the across station variation for each year, is 

greater than that found in the bias-corrected climate model, indicating that the GCM 

simulations fail to replicate the spatial variability. As well, Figure 1-c (comparison of the 

intra-annual coefficient of variation (CV)) confirms that the observed intra-annual (i.e., 

within the year) variability is not well captured in the model. Other statistics including 

annual skewness, trends in average annual rainfall (using Mann-Kendall Tau values), and 

annual lag-1 auto-correlation also show significant biases. The model simulates the length 

of the dry spell relatively well but cannot capture the extremes (exceeding 95 percentile of 

non-zero daily precipitation computed for each dataset independently) and wet spell length. 

These limitations were seen in other bias-adjusted GCMs as well, including HadGEM2-

ES, IPSL-CM5A-LR, and MIROC5 (see Supplementary Material). Owing to these 

shortcomings, GCMs are less effective in their application for water resources planning and 

management. Here, we suggest that the utilization of long historical data in conjunction 

with climate state information provides a more reliable tool to simulate daily weather 

variables in the near term, and our study explores the evidence for this assertion by applying 



a climate-informed statistical Weather Generator (WG) to simulate precipitation over the 

Northeast.  

 WGs are intended to produce synthetic weather sequences that mimic the statistical 

properties of observed meteorological records (Wilks & Wilby, 1999). Different parametric 

and semi-parametric WGs are available. WGs may use an autoregressive modeling 

framework (Aiyesimoju, 2010) or pre-clustering of rainfall cells/points to simulate the 

storm arrival in a generalized linear process (Onof et al., 2000; Mannshardt-Shamseldin et 

al., 2010). They may also employ a hierarchical framework, which conditions the local 

meteorology on large-scale synoptic climatological patterns and weather types or regimes 

(Allard et al., 2015; Benestad, 2016; Pierce et al., 2014). Non-parametric methods for WGs 

often use resampling techniques to simulate synthetic data from the observations (Oriani et 

al., 2014; Pierce et al., 2014; Yiou, 2014). A well-established method among the non-

parametric methods for WGs is the K-Nearest Neighbors (K-NN) method. The idea of K-

NN can be traced back to the concept of “discriminant space” developed originally by 

Young (Young, 1994). He used an orthogonalized multi-dimension space as a predictor to 

choose the past days that most resembled the current weather condition. Similarly, Lall and 

Sharma applied discrete kernel weighing to select the nearest neighbors in the historical 

data (Lall & Sharma, 1996; Sharma et al., 1997). Their work was extended by the inclusion 

of a large set of weather variables (Rajagopalan & Lall, 1999); modified by using 

Mahalanobis distance in the weighing function (Yates et al., 2003); and improved by 

considering inter-station correlation (Sharif & Burn, 2007; King et al., 2015). However, 

WGs commonly rely on the assumption of stationarity in weather generation processes and 

therefore, cannot capture shifts in the statistics of hydrologic variables (Benoit et al., 2018). 

A few studies addressed this limitation by adding simulated standardized anomalies to 

cyclo-stationary mean (Smith et al., 2017), or by incorporating non-stationary weather 

generation parameters (Chandler, 2005; Lima et al., 2015). 

 In this study, we develop and present a new climate-informed K-NN algorithm to 

simulate future weather. The methodology we employ is exploratory, where we examine 

and incorporate the assumption of non-stationarity with different training and validation 

periods. Moreover, we evaluate and compare the skill of the proposed climate-informed 

resampling scheme with the outputs from the original K-NN method and with the ISIMIP-

GFDL model outputs. We look at the ability of the model to simulate the 1960s drought 

and the recent wet climate in the Northeast USA and argue that utilization of historical data 

along with information from climate may more reliably replicate both secular trends and 



internal variability in the data for short-term hydrologic planning purposes. 

2. Data and Methods 

 Our recent analysis of extreme rainfall in the United States characterizes the 

Northeast region as one with a significant shift in the frequency of extreme rainfall events 

(Armal et al., 2018). The meteorological data used in this study is taken from 53 stations 

with an identified monotonic trend in this analysis. This dataset was derived from the 

Global Historical Climatology Network - Daily (GHCN-D) database 

(https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/). The 53 selected stations have at least 

92 years of complete precipitation data during 1900 - 2014 (115 years). The fraction of 

missing data is less than 20%. Figure 2 presents the spatial distribution of these stations. 

The number of years of available data is shown using the color bar, and the monotonic trend 

in the annual total precipitation measured using Mann-Kendall tau is displayed using the 

size of the circle. For applying our algorithm, we also acquired the maximum and minimum 

daily temperature (Tmax and Tmin) from the same stations. Since the filtering process was 

only based on having a trend in precipitation, the daily temperature data for many stations 

were not fully available. As the focus of the study is to analyze the daily precipitation, in 

our simulation, we used the spatial average of the maximum and minimum temperature as 

the Tmax and Tmin data for all the stations. In other words, we adopt a single time series 

(averaged over the 53 stations) for daily Tmax and Tmin. Since the temperature is spatially 

homogeneous, we believe this is a reasonable compromise due to the lack of data.  

The proposed Climate Informed K-NN resampling model is an extension of the K-NN 

weather generator. In the next sections, we briefly describe the original K-NN algorithm 

and then introduce the proposed climate-informed resampling scheme. 

2.1. The K-NN Weather Generator 

 The K-NN weather generator (originally developed by Rajagopalan and Lall 

(Rajagopalan & Lall, 1999)) is a data-driven approach that simulates future weather 

variables conditional on the current weather state and its relation to historical 

weather. It has the following steps. 

1. The feature vector comprising the current weather variables is first defined. 

We call it the conditioning vector. In our case, the feature vector or the 

current conditioning vector is 𝑉𝑉𝑖𝑖  =  [𝑃𝑃𝑖𝑖,𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖,𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖] for each weather 

station, for the current day 𝑚𝑚. 



2. For this conditioning vector (𝑉𝑉𝑖𝑖), we compute its distance, in the state space, 

to the historical weather vectors using the Mahalanobis distance metric.  

𝑑𝑑𝑖𝑖𝑖𝑖 = ��𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑖𝑖�
𝑇𝑇
Σ−1(𝑉𝑉𝑖𝑖 − 𝑉𝑉𝑖𝑖) 

𝛴𝛴 is the covariance matrix of weather variables in the corresponding season. 

𝑉𝑉𝑖𝑖 is the historical weather vector for a day 𝑗𝑗 

3. The historical weather vectors 𝑉𝑉𝑖𝑖𝑠𝑠 are ordered/ranked according to the 

distance 𝑑𝑑𝑖𝑖𝑖𝑖, and the 𝐾𝐾 nearest neighbors are identified. Weather vectors that 

have smaller (larger) distances indicate similarity (difference) in terms of the 

weather conditions. For each of these 𝐾𝐾 nearest neighbors, we identify the 

successor vector that comprises the next day’s values of the weather.  

4. A discrete kernel probability (Lall & Sharma, 1996) is defined for each of 

the 𝐾𝐾 neighbors using the following function.  

𝐾𝐾[𝑗𝑗(𝑚𝑚)] =
(1/𝑗𝑗)

∑ (1/𝑗𝑗)𝑘𝑘
𝑖𝑖=1

 

𝐾𝐾[𝑗𝑗(𝑚𝑚)] is the probability with which 𝑉𝑉𝑖𝑖 is resampled for the current day 𝑚𝑚. 

Closer neighbors have more probability of being resampled. This 

resampling kernel is the same for any day 𝑚𝑚. 

5. As the final step, one of these vectors is resampled according to the kernel 

probability, and its successor vector is taken as the weather for the next day. 

6. With the immediately generated weather as the current feature vector, this 

process is then repeated to simulate the weather for the following day. 

7. We prescribed 𝐾𝐾 = 45 since that choice gave us the lowest absolute error in 

simulating annual precipitation. Generally, it is suggested, based on the asymptotic 

argument, that K should be proportional to 𝑚𝑚𝑑𝑑/(𝑑𝑑+4), n being the total number 

of neighbor vectors in the space, and d being the dimension of the feature 

vector (Fukunaga, 1990). We investigated the sensitivity of our simulation 

results to number of neighbors, and found that number of neighbors did not 

considerably alter the absolute error. The optimal neighbors we used are 

mostly conforming to the ones recommended in the literature. We also 



observed a similar low error across all the neighbors and windows used, 

indicating that the error is uniform across all windows 

2.2. Climate-Informed K-NN Resampling 

 As presented in section 2.1, the original K-NN scheme is based on the nearest 

neighbors of the historical daily weather variables. We modify this scheme by 

incorporating large-scale meteorological information in the choice of neighbors and 

the resampling process using the premise that this large-scale meteorological 

information drives the variability (secular and cyclical). We use two climate 

variables in the model: the annual average of 500-hPa geopotential height anomaly 

(GPH) and the North Atlantic Oscillation (NAO) index from 1900 - 2014. We 

extracted the long-term mean of GPH over the applied weather stations from 

NOAA-CIRES Twentieth Century Reanalysis-V2c dataset (provided by the 

NOAA/OAR/ESRL PSD, Boulder, Colorado, USA) available from NOAA/ESRL 

website (https://www.esrl.noaa.gov/psd/). This dataset is the result of assimilation 

of observations into a numerical weather prediction model with an Ensemble 

Kalman Filter (Compo et al., 2011). It is available on a global grid, with a spatial 

resolution of about 200 km. The NAO index, aggregated from monthly to yearly 

averages, is obtained from NOAA Climate Prediction Center 

(http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml). Studies confirm the 

potential of applying NAO to predict eastern United States’ climate and its 

association with the 1960s drought and the following wet period (Seager et al., 2012; 

Bradbury et al., 2002; Coleman & Budikova, 2013). Our recent studies also 

demonstrated that variation in NAO partly explains the frequency of precipitation 

extremes in the Northeast (Armal et al., 2018, Armal and Khanbilvardi, 2019).  

 In the vector of climate variables (𝐶𝐶 =  (𝑁𝑁𝐴𝐴𝐴𝐴,𝐺𝐺𝑃𝑃𝐺𝐺)), Mahalanobis distance 

provides a metric to identify climate similarity. We now have two distance measures: 

one is identifying weather similarity (d) from the days, and one is identifying climate 

similarity (dc) from the years. We use these two in conjunction to reorder the 

weather neighbors in accordance with their climate similarity. Weather neighbors 

that belong to a climate similar to the current year’s climate will be ranked ahead 

of the weather neighbors that are further away from the current climate. The kernel 

density function and resampling is now applied to the reordered neighbors to choose 

the weather neighbors that belong to the most analogous years (i.e., most similar 

http://www.esrl.noaa.gov/psd/)
http://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml)


climatic years). 

 Figure 3a depicts the main steps of the climate-informed model. The model 

consists of three key steps, which are explained here using an illustration shown in 

Figure 3b. (1) The algorithm identifies the current state and applies Mahalanobis 

distance to obtain the closest members of historical weather vector to the current 

condition and stores their time-indices (𝑚𝑚𝑖𝑖,𝑚𝑚). In the illustration, we show 14 nearest 

neighbors for the current weather variable [2.0, 28.8, 14.2] under the 𝑅𝑅,  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 columns. (2) The algorithm applies Mahalanobis distance on yearly climate 

vector to find the most analogous climate years (Cm). The closest members (to the 

current condition) from the historical weather vector that are also close in terms of 

the similar climate index values are then prioritized. From the illustration, the current 

climate vector is [𝐺𝐺𝑃𝑃𝐺𝐺,𝑁𝑁𝐴𝐴𝐴𝐴]  =  [0.91, 0.71]. This is in the year 1982, and the 

closest neighbors to this climate state are years 1946, 1920, 1953, 1914, etc. These 

rows are highlighted to show climatically similar weather vectors.  They are 

prioritized, i.e., they move up in order as shown in the table on the right.  Notice 

how the 12th neighbor by weather distance 𝑑𝑑 now becomes the 3th closest neighbor 

after re-ordering by the climate distance (𝑑𝑑𝑐𝑐). There is now a greater probability that 

this neighbor will be sampled. (3). The algorithm applies a discrete kernel estimator 

𝐾𝐾[𝑗𝑗(𝑚𝑚)] on the relative frequency of the data lying in the local neighborhood and 

resamples one of 𝑚𝑚𝑖𝑖,𝑚𝑚 from climate-rearranged set of nearest neighbors. The successor 

vector of the selected neighbor is used as the weather of the next step. 

2.3. Model Training 

 Similar to other memory-based algorithms, providing more training data to 

the K-NN model reduces the chance of misclassification in the selection of 

neighbors (Friedman et al., 2001). As the size of training data increases, there are 

examples to generalize to the unknown sample and generate a good local 

approximation. If the properties of the current state and near-term projections are 

similar to the properties of the training data (historical data in this case), the 

algorithm yields a more reliable result. By contrast, when the process is not 

stationary, and the simulation period is not represented in the training dataset, the 

model predicts different statistics than observed. We experiment with this idea and 

evaluate the model’s performance using a range of out-of-sample analysis windows. 

 We train both the original and climate-informed K-NN resampling models over 



expanding window sizes that begin in 1900 and end in years ranging from 1940 to 

2004. For each training window, the model simulates daily weather for the succeeding 

ten years; i.e., we simulate weather data from 1941 to 1950 using the historical data 

from 1900 to 1940 as the training set; likewise, we simulate weather data from 1942 

to 1951 using the historical data from 1900 to 1941 as the training set. We do this 

in moving windows that end with generating weather data for 2005 to 2015 using 

training data from 1900 to 2004. As we move from 1941 to 2005, the size of the 

historical data (training set) increases one year at a time. We repeat this exercise 30 

times to get an ensemble of synthetic weather. Hence, in a series of simulations, we 

increase the size of training data and consequently evaluate the skill of the model in 

generating precipitation. The step-wise training provides a systematic inspection of 

the power of the algorithm over different segments of data, with and without climate 

conditioning. All the variables were first de-seasoned by removing the calendar day’s 

mean. In the next section, we discuss the results by pooling the outputs from all the 

weather stations.  

3. Results 

 Figure 4 shows the annual distribution of average precipitation as simulated 

using the step-wise training approach. The shaded area in Figure-4(a) and Figure-4(b) 

indicates the range of decadal simulation runs across all the stations from the 

original K-NN and the climate-informed K-NN models, respectively. These 

boundaries are smoothed over the decadal periods using a locally weighted smoothing 

approach (LOWESS) (Loader, 1999). The red and the blue lines represent the 

LOWESS applied to the median of the annual distribution. The boxplots represent 

the annual average observed precipitation over each of the 10-year simulated blocks. 

 For the original K-NN scheme (Figure 4-a), the decadal simulations exhibit a 

positive bias and do not accurately represent rainfall deficits, especially in the periods 

up to the early 1970s. The increase in the size of the training data certainly reduces 

the bias, as seen in the simulations of recent decades. A larger training size improves 

the choice of neighbors and the generation of the annual average daily precipitation. 

Nevertheless, K-NN simulation depicts a relatively high bias around and after the 

1960s. The shift in the characteristic rainfall distribution due to a severe drought that 

occurred in the early to mid-1960s explains this bias. This abrupt drought was 

followed by a wetter climate in the region that began around the early 1970s and 



has continued since (Seager et al., 2012). The simulation blocks that start in the wet 

period after the 1960s show a more reliable outcome. 

 Figure 4-b shows the outcome of the climate-informed model. Adding climate 

information generates a larger spread of average annual daily precipitation and 

broadens the envelope of the range of values. Compared to the original K-NN 

algorithm, the climate-informed K-NN model covers the observed data in low 

precipitation events and simulates the 1960s annual precipitation well. The findings 

of Seager et al. (Seager et al., 2012) suggest that the temporary drought is a result 

of the oscillatory nature of NAO and the seesaw in the pressure and GPH anomalies 

between the subpolar and subtropical Atlantic Oceans. Improved simulations of the 

1960s drought decade illustrate that including these components of the climate state 

is beneficial in projecting dry (or wet) decades reliably. The climate-informed model 

makes use of analogous years, in this case, ones with dry conditions that are available 

in the training dataset but are not necessarily used in the K-NN resampling. However, 

it is apparent from Figure 4-b that the drying condition in climate-informed simulation 

continues longer than observation – until circa 1970. At each step of training, the 

window expands one year, and the updated historical data overlaps with low 

precipitation years in the 1960s. This will affect the simulation and prolong the dry 

condition in the outcome for a few more simulation windows. 

 To evaluate the performance of the developed models, we compare the skill 

of the original and the climate-informed K-NN scheme over a range of statistics that 

may be of interest to water managers. These properties are calculated for 10-yr 

periods, succeeding two different training periods: (1) The training period ending in 

1960 (1900-1960), to address the ability of the models to simulate the 1960s drought 

(1961-1970), and (2) The entire period of the dataset, excluding the last 10 years of 

data (1900-2004), to simulate the continued contemporary wet period (2005-2014). 

Figure 5 shows the outcome of 1961-1970 precipitation simulations using 1900-1960 

as the training data. Figure 6 compares the same statistics for the 2005-2014 

simulation period that uses 1900-2004 for training. The variation in these statistics 

across the 30 iterations and the 53 stations is shown in the boxplots. Outliers are 

excluded.  The statistics are obtained yearly from daily precipitation and include the 

average intra-annual coefficient of variation, skewness, trends in annual average 

precipitation (Mann-Kendall Tau), extreme values above the 95th percentile, wet spell 

and dry spell length with 1-mm threshold, and lag-1 autocorrelation. The application 



of K-NN resampling previously showed its ability to reproduce such statistics over 

historical simulations (Rajagopalan & Lall, 1999). Here it’s worth mentioning that 

GCM runs are driven by radiative forcing such as greenhouse gas concentrations and 

volcanic eruptions and are not expected to capture the timing of decadal climate 

variability that is largely internal to the atmosphere/ocean (Fernandes et al. 2015, Wang 

et al. 2017, Trenberth et al. 2018). Furthermore, the current work does not intend to 

assess the ability of the climate models based on a set of time-dependent statistics. 

Rather, it aims to study the skill of the proposed model using the output of the trend 

preserving bias-correction methods (Hempel et al. 2013) as an additional baseline. 

The GFDL statistics for the period 2005-2014 are obtained by combining the last year 

of the historical simulation (2005) with each available RCP pathways (2006-2014). 

Other statistics, including intra-annual CV and skewness, confirms the ability of the 

climate- informed scheme to reproduce 1960s data. The comparison of the model-simulated 

statistics is made with the observed statistics using a similarity measure with a bootstrap 

approach. From the distributions of the observed and the model-simulated statistics, we 

randomly draw 100 values and compare how many of them match, i.e., how many of the 

simulated statistics are equal to the observed statistics. We compute a similarity ratio as the 

fraction of common values in the bootstrap sample of 100. A ratio close to one (zero) 

indicates that most of the randomly sampled values from the model simulated, and the 

observed statistics are similar (different). We repeat this sampling and computing the 

similarity ratio 10,000 times to obtain a distribution of the similarity ratio. The 5th percentile 

from this distribution is selected as the test statistic and reported in Table 1 for both the 

1960s and the recent wet decades.  It is evident from the Table that the climate-informed K-

NN model simulations compare better than the original K-NN and the GCM simulations in 

terms of the statistics used. For example, for the average annual precipitation, at the 95% 

confidence level, the match ratio is only 67.6% for K-NN and 59.7% for GCMs, but it is 

94.5% for the climate-informed model, indicating that for the same chosen level of 

confidence, the climate-informed model has much higher match ratio – similarity to the 

observed. Trend compares poorly with the observations in both the decades across the three 

models. GCM similarity is generally lower compared to the two K-NN models. The largest 

improvement that the climate-informed K-NN model offers in terms of its similarity to the 

observed statistics is in the annual average precipitation during the 1960s decade. In the 

2005-2014 decade, the most considerable improvement seems to be on the annual average 

precipitation and the intra-annual coefficient of variation of rainfall. 



In addition to these comparisons, an examination of Figures 5 and 6 indicate that the climate 

informed model better reproduces the 1960s trend than the GFDL simulations. It is an 

example of the shortcoming of GCMs to capture the decadal fluctuations of annual 

precipitation due to internal variability in the climate system. The simulation of 

contemporary data also shows the capability of the climate-informed model in better 

simulating precipitation statistics, even though all the models poorly represent the recent 

trend. In the simulation of the 1960s, all three models (K-NN and climate-informed K-NN 

along with GFDL) capture the observed 95% precipitation extreme values. In the 

contemporary runs, the climate-informed scheme depicts a more reliable performance. 

Either with the short or long training period, both resampling schemes, as well as the GFDL 

model, successfully capture wet spell and dry spell length. In both sets of training, the 

original and modified K-NN schemes replicate the lag-1 auto-correlation. The GFDL results 

are also acceptable with the 1960s simulation, but not reliable in the contemporary period. 

 In Figure 5 and 6, we use different statistics to assess the performance of the climate- 

informed resampling, in two different observation blocks. In Figure 7 and 8, we measure the 

capability of the climate-informed model to simulate the decadal variability of the 1960s and 

the contemporary period (2005-2014). Comparing the inter-annual variability of average 

daily precipitation reveals that for the 1960s drought, the climate-informed model improves 

on the original K-NN resampling scheme, particularly with respect to annual average 

precipitation. For the contemporary period, both models generate a relatively similar pattern 

in the median of values, but only the climate-informed model preserves the range and tails 

of average daily precipitation well. Notably, K-NN underestimates the observed variability 

for both periods. The outcomes of the climate-informed model, on the other hand, relatively 

overestimate the values of the median.  

 In summary, as a result of incorporating climate information in the resampling 

model, we observed an improvement in the simulation of average annual precipitation over 

periods of changing regional hydroclimate regime. The use of climate data favorably 

modifies the resampling scheme and replicates several characteristics of daily precipitation, 

although limitations are observed in the preservation of tails in some statistics (e.g., wet spell 

and dry spell). Inclusion of additional regional scale atmospheric variables as climate 

informants may better resolve the tails in these statistics. Also, in the current model, due to 

lack of data, we applied the average temperature over the region, which can lead to a biased 

simulation that may be affecting the higher precipitation quantiles. The performance of the 

model may be more satisfactory if we incorporate historical temperature data which is 



specific to each station, where available.  

 For both training periods, the climate-informed model regularly performs well in 

recreating different statistics over the periods of studies. Specifically, the model replicates 

the range of average annual daily precipitation values in both the 1960s and the 

contemporary wet periods. The Northeast is characterized by ongoing wetting shift (Huang 

et al., 2017) and an upward trend in extreme precipitation (Easterling et al., 2017). Krakauer 

(Krakauer, 2014) shows that the mean of the recent precipitation in parts of the Northeast is 

25% above its value before 1970, with even larger increases in the intensity of wet extremes. 

The results of this simulation indicate that the long-size training dataset contains similar 

hydroclimatic years, which enable the simulation of these new prevailing conditions with 

climate-informed K-NN. The wet period observed in the earlier part of the twentieth century 

(Seager et al., 2012) conditions the algorithm in the later sets of simulations by supplying 

neighbors with analogous hydroclimate conditions. 

4. Summary and Conclusion 

 Engineering design and practice may rely on the simple idea that the characteristics 

of future events resemble the past. Non-stationarity contradicts this traditional point of view. 

Practically, GCMs perform a critical role in addressing non-stationarity in meteorological 

data due to changing climate forcing. However, GCMs often fail to represent inter-annual 

variability accurately on decadal scale. Our analysis adopted an exploratory method to verify 

the feasibility of applying stochastic modeling in inferring these characteristics for 

precipitation in the Northeast USA.  

 We proposed a climate-informed K-NN model which adjusts the vector of selected 

nearest neighbors based on climatic information. We employed both the original K-NN and 

proposed climate-informed model and performed a set of simulations using a step-wise 

expanding training window, with a minimum length of 40 years. It is revealed that the 

climate-informed model replicates the range of annual average daily precipitation, while the 

original K-NN scheme fails to capture lower tail values across many blocks of simulation. 

With the simulation of different statistics of daily precipitation in the 1960s and 

contemporary (2005-2014) period, we compared the results of the proposed model with the 

original K-NN and the GFDL model. Results indicate that the climate-informed model 

consistently presents better performance. It demonstrates that incorporating climate 

information improved the skill of resampling scheme in the regeneration of different usable 

statistics.  



 Lins and co-authors (Lins & Cohn, 2011) argue that a lack of thorough understanding 

of the physical and scientific background in the context of hydrology blurs the line between 

stationarity and non-stationarity. They conclude that: “In a statistical sense, while the future 

will not repeat the past, its properties can be inferred from the past.” In this study, we show 

that the utilization of historical data along with proven climate informants allows the 

simulation of the statistical properties of daily precipitation over the next ten years. The 

demand for such empirical correction that applies a data-adaptive scheme to improve near-

term projections is suggested by (Krakauer, 2014; Krakauer & Fekete, 2014). Although 

GCMs may not always simulate these properties well over the near-term future, they may 

be a valuable tool to inform the predictors and initial condition for simulating future regional 

hydroclimate using climate-informed K-NN or similar methods. 

 Retrospective GCM runs, including re-analysis products, are potentially quite useful 

in assessing global teleconnections associated with regional hydroclimatology. Applying 

climate-informed resampling to regulate local neighbors with modes of natural climate 

variability relies on knowledge of modes of decadal variability of regional climate. This 

methodology offers a way to integrate climate information with historical variability for 

improved simulations. These improved simulations can be used for simulating near-term 

streamflow, which in turn are used for short-term water resources planning and management. 

Water managers and decision makers can benefit from this information for robust system 

design and water resources analysis.  
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